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Abstract

In a simple model where 5 animats move independently and randomly over a 10 by
20 lattice the influence of different approaches to modelling time and borders of the
lattice on the use of the lattice and on the occurrence of meetings between animats is
studied. The approaches of modelling time include a parallel regime, a regime with random
waiting times till activation and one with random waiting times and local activation.
Borders are modelled by a toroid shape of the lattice, a fixed border and behavioural
reflection. The way the border is modelled influences the homogeneity with wich individual
fields of the lattice are visited and how long meetings between animats last whereas the
different approaches to model time lead to significant differences in the lenght of the
meetings. These issues should be considered in discussions of individual-based artificial—-
world models and taken into consideration if building new models.
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ders, home-range



Introduction

Models using differential, partial-differential and difference equations have long and widely
been used in ecological research (e. g. Abrams, 1994; Akcakaya et al., 1995; Holmes et al.,
1994; Goss et al., 1989) and less often in behavioural research (e. g. Bonabeau et al., 1996;
Calenbuhr and Deneubourg, 1992). Recently these models have been extended to accomo-
date more details as in e. g. structured population models where one can model different
subclasses of animals with each subclass having its own characteristics (e. g. DeAngelis
and Godbout, 1991; Petersen and DeAngelis, 1992; de Roos, 1995). Another and even far-
ther extension are the family of models introduced in ecological and behavioural research:
the individual-based artificial-world models (Hogeweg and Hesper, 1990b; Judson, 1994;
Hogeweg, 1989; Hogeweg and Hesper, 1979; Hemelrijk, 1996).

In these latter models individual animals (“animats”) with a given behavioural mech-
anism move in a specified environment and base their actions on local information. These
models have many advantages. Among them are: (1) The model input from data (be-
havioural mechanism and structure of the environment) is quite easily observable and on
a different level than the phenomenon of interest in the model, such as habitat utilization,
social structuring, population dynamics, and others; (2) Space is explicitely modelled and
can thus possibly structure the behaviour (outcome) of the model; (3) The language to
talk about the model and methods used for model evaluations are identical to those known
from work with the real phenomenon.

Different modelers have used different approaches to model time and space (here I
consider especially the boundaries of the model-space), but often fail to make it explicit
how they go about it. A lack of standards in model presentation was recently formulated
in Bart (1995).

Time is mostly modelled to be either synchronous, parallel, or pseudo—parallel. Syn-
chronous means that all entities are updated together at certain times of the model-clock
(e. g. Hogeweg, 1988; Wolff, 1994). This approach is most often used in models that are
based on cellular automata. In parallel models the animats behave in parallel but not
necessarily synchronous. Though very natural, these models are still quite rare as they
are most easily implemented on parallel computers.

Pseudo—parallel (often called event—based) models (e. g. Lhotka, 1994) try to avoid
the synchronisation of the first and the hard—ware dependence of the second method. One
straightforward way to implement this is to give each animat a random waiting time and
then deal with one animat at a time (the one with the currently shortes waiting time).

Some psudo—parallel models are extended to allow local activation. I. e. the waiting
time of animats that are close to an active animat or a special location is reduced and thus
the interval to the next activation shortened for this animal (e. g. Hogeweg and Hesper,
1983).

Most authors are more explicit about how they model space and the borders of the
modelled home-range. Home-range in this paper is meant to describe the area where
an animat can be found in the model landscape, which should reflect the area where an
animal moves in the wild.

Space is most abstractly modelled as a regular lattice (e. g. Hogeweg, 1988; van der
Laan et al., 1995), similar as in cellular automata, or as a continous square or landscape
(e. g. Liu, 1993). In both systems the borders may either be absent, i. e. the model
space forms a toroid (e. g. Hemelrijk, 1996; Ruxton, 1996), fixed (e. g. Turner et al.,
1994) or avoided by a model mechanism, e. g. animats wander through the area which
only represents a small part of the system of interest (e. g. Hogeweg and Hesper, 1990a),
or animats are reflected at the boundary (e. g. Reuter and Breckling, 1994).

Sometimes patches of space are connected in a given way to form networks with only
restricited accessibility from one patch to another (e. g. Hogeweg and Hesper, 1983; Folse



et al., 1989).

In other models the animats’ dominante behavioural mechanism is to follow resources
(females and/or food). They presumably stay within the home-range mainly because
these resources are confined to it (te Boekhorst and Hogeweg, 1994b,a) though the authors
don’t state the mechanism explicitely.

In this study the influnece of the timing regime (synchronous, pseudo-parallel and
pseudo—parallel with local activation) and border rules (toroid, fixed border and be-
havioural reflection) on the visits to fields of a lattice and on the number of encounters
between animats is studied in a quantitative way.

Methods

Computer simualtions for this study have been conducted using C** with the GNU
compiler g++ on an aix 6000 cluster. The language was chosen because it includes
object—oriented features (Haltermann, 1995; Silvert, 1993) which help in individual-based
artificial-world models (e. g. Liu, 1993; Galea et al., 1996) but is more widely available
than other more specialized object—oriented languages such as e. g. SmallTalk (Baveco
and Lingeman, 1992; Lhotka, 1994; Baveco and Smeulders, 1994). Another advantage is
that it is a truly compilable (and not an interpreted) language and thus the simulations
run very fast.

The code for the present simulations has not been speed optimized as the models were
already very fast if compiled with g++ XY.cc -o XY.out and run with time XY.out >
XY.runNO (where XY is the name of the specific program [a specific time-border combina-
tion] with a specific random seed and NO is the run number).

The programs all consisted of the ran2 random-number generator suggested in Press
et al. (1992) (the seed was taken from the uniform random number generator in S—plus, see
section on statistics), a definition of the class “animat” and its methods and the function
main () which initalized the position of the animats and updated their position a certain
number of times or during a certain time (measured by the model—clock, see below). At
each point in time when an animat moved the time and the position of each animat were
written to standard out (and redirected to a file).

In the present simualtion runs five animats moved independently on a lattice of size
20 by 10. At each time when they moved they chose to do one step north, south, east or
west according to given probabilities (see below). The model time would run from 0 to

2000 (see below).

Modelling time

Parallel: After the random initializaiton of the position of the animats, they all syn-
chronously moved 2000 times.

Pseudo—parallel (random waiting time): With each move the animats were assigned
a unifom random waiting time between 0.5 and 1.5, then the animat with the shortest
waiting time was chosen and moved, all the waiting times and the model-clock
updated. This was repeated until the model clock reached the value of 2000.

Pseudo—parallel with local activation: As in the pseudo—parallel case with the ad-
dition that the waiting time of animats that were in the vicinity (not farther than
a distance of 2 away from the new location) of an active (moving) animat were
drastically reduced (by a factor of 0.25).



Modelling borders

Toroid: The animats move on the lattice as if it was a toroid.

Fixed border: The animats move along the edge and back into the field with equal
probability if they are right at the edge of the lattice.

Behavioural reflection: As in the fixed border condition, but the tendency to move
along the edge or back into the field rather than further towards the edge decreases
from the third field from the edge. The probabilites to move further towards the
edge are for the four outmost rows: 0.25, 0.22, 0.16 and 0, i. e. the tendency not to
go further is getting larger step by step.

Response variables

To judge the differeneces in the model outcome caused by the different approaches to
modelling time and borders the following response variables (observed behaviour of the
system) were evaluated for one animat per run. All variables were chosen to be inter-
pretable in a biological context of habitat utilization and/or social interaction.

Median values and inter—quartile ranges (IQR) were preferred over mean and variances
and are reported here. The preference was due to their robustness towards outliers their
being typical in the sense that the values represent fix quantile—points/—intervals in the
distribution of the data. Some of the response variables were also evaluated by their
means and variances and the qualitative results were the same. This is to be expected as
the response variables are not expected to deviate greatly from a specific (?) distribution,
as the whole model only includes “random processes”.?

Number of moves: Number of times the animat in focus moved during the model run.

Median number of visits to each field of the lattice as a measure of how uniform-
ly the field was used (combined with the IQR, see next item).

IQR of the number of visits to each field

Median number of visits to the fields at the oumost edge to get a more specific
idea on how the border condition influences the use of the fields towards the edge
(combined with IQR, see next item).

IQR of the number of visits to the border fields
Number of fields with no visits The number of fields that were not visited at all.

Median number of meetings The median of the number of times the animat in focus
was closer than 2 fields from the other 4 animats. To count as a new meeting the two
animats concerned had to be farther apart for at least one step of the model—clock.

Range of number of meetings Maximum number of meetings minus mimimum num-
ber of meetings with the 4 other animats.

Median length of meetings Median length of meetings with one other animat (in units

of the model—clock).
IQR of length of meetings

Additionally the size of the record file (including the time and the location of all
animats at all the times when at least one of the animals has moved) and the UNIX
real, user and system time (output from the UNIX comman time) were recorded (see
Discussion).



Statistical analysis

The simulation output was evaluated using S—plus (Becker et al., 1988; Chambers and
Hastie, 1992; Venables and Rippley, 1994) Version 3.2 on a Sun 2 with 36 MB RAM. The
response variables were singly tested in a two—way ANOVA with the different time and
border conditions as explanatory variables.

A full model with the interaction was calculated and then a stepwise—backwards proce-
dure was used to eliminate insignificant varibles. Some response variables were square-root
transformed to achieve a better normal distribution of the residuals (see Results).

Residuals of the ANOVA were checked for normality, expected mean of zero and con-
stancy/equality of variance using graphical methods: the qgqnorm-plot (residuals versus
quantiles of a normal distribution), the Tukey—Anscombe-plot (residuals versus fitted
values) and plots of the residuals versus the explanatory variables.

Some response variables showed a long-tailed distribution (a distribution with out-
liers). It is not clear why these occurred as the model was a model of pure random walk.
Nevertheless, in the case of outliers, the statistical model was recalculated without the
outliers (Table 1).

Results

All the response variables could be transformed so that the assumption of normally dis-
tributed errors was not seriously violated (Table 1). A typical residual plot can be found
in Fig. 1. In these plots the line in the qg—norm plot might show small steps due to
the response variables being counts, the variation of the residuals sometimes are slightly
different between the groups. In some response variables outliers had to be excluded from
the analysis, but the significance of the explanatory variables remained the same.

The number of moves was mainly influenced by the variable time: the parallel move-
ment of the animats and the assignement of random waiting times between 0.5 and 1.5
time—lengths had both fewer movements (exactly 2000 for the parallel case and a median
of 2004 for the random case) than had the conditions where there was an aditional local
activation (median number of moves 2286.5, Fig. 2, top). After eliminating the ouliers,
the number of moves also showed dependence on the way the border was modelled and
on the interaction term between between time and border (Table 1). These latter are not
obvious in the plot but might be due to small differences in location combined with a
rather small variance of the distribution of the number of moves. These results make it
necessary to correct some of the subsequent response variables, i. e. they were divided by
the number of moves.

The median number of visits to the fields corrected by the number of moves showed
a decrease from the toroid to the fixed border and the behavioural reflection (Fig. 2,
middle).

The IQR of the number of visits to the fields was not corrected because even if the
median number increases with the number of moves, the IQR would not necessarily behave
in the same way (the qualitative outcome with the correction is the same). The IQR gets
higher from the toroid to the fixed border to the behavioural reflection (Fig. 2, bottom
and Table 1).

The median number of visits to the fields on the outmost edge of the lattice corrected
for the number of moves were highest for the toroid intermediate for the fixed border and
lowest for the behavioural reflection (Fig. 3, top and Table 1). The IQR of the number
of visits to the fields on the outmost edge of the lattice was also highest for the toroid,
slightly lower for the fixed border and lowest for the behavioural reflection (Fig. 3, second
from top and Table 1) wheras the IQR corrected for the number of moves showed the
inverse pattern (Fig. 3, second from bottom and Table 1). The number of fields with no



visits corrected with the number of moves showed this latter pattern, as well. Additionally
there were slightly more fields with no visits in the parallel and random than in the local
activation (Fig. 3, bottom and Table 1).

The median number of meetings corrected by the number of moves showed no change
between the different modelling approaches (Fig. 4, top and Table 1). The toroid situation
showed a decreased range of the number of meetings (corrected by the number of moves)
in comparison to the other two approaches (Fig. 4, second form top, Table 1). The median
length of meetings decreased from the parallel to the random to the local activation and
the IQR of the length of the meetings showed a parallel pattern (Fig. 4, bottom two,
Table 1).

Lliscussion

These model runs show, that even simple changes in the manner of how to compute time
and borders in an individual-based artificial-world model lead to different behaviour of its
inhabitants and it is thus important to report these mechanism so that other researchers
can view the results of the simulations in the light of the approaches used (Bart, 1995).

In these models an increasingly complicated way to model time (from parallel to
random to local activation) lead to shorter meetings and such with less variable length.
The IQR might just be correlated with the length of the meetings. In the parallel case all
the meetings last at least 1 time—step whereas in the other two situations many meetings
will be shorter: one animat moves into the vicinity of another and then it or the other
moves away at the next activation time which can be shorter than 1 time-step. It is
astonishing though, that with the random activation (with or without the added local
one) one can not observe more meetings per number of moves than in the parallel case. On
the other hand the range (and with it the maximum length of the meetings) increased the
more complicated the border is modelled (from toroid to the fixed border to behavioural
reflection). This is probably a consequence of the more restricted directions to move at
the edges of the lattice, so that animats close to the border are more likely to stay in each
others proximity.

The increase in complexity of the approach to model the border also leads to a lower
median number and a higher IQR of visits to the fields, a lower median number of visits
and a lower IQR of visits to the fields on the edge of the lattice and to an increase in the
number of fields with no visits. This can all be explained with the fact that the animats
are more seldom in the fields on the edge of the lattice.

These variables have to be considered if looking at applications of such models. It
means that depending on the modelling approach animats use their modelled habitat
more or less homogenously and that the chances for interactions between animats might
differ. If the phenomenon under study is very robust it can still appear independently on
the basic approaches to model e. g. time and border through the simulation that runs on
top of these “low-level” problems.

Another important ascpect in these models is how much computer resources are used.
The size of the output file (about 5 to 35 KB) depended mainly on the way time was
modelled. This is obvious as the location of animats was written to the file whenever one
of the animats was acitvated. This is not necessary in every case; it could be enough to
write the new position of the animat that has moved. Output might be much further
reduced if part of the evaluations were conducted within the program. More interesting
is the run time of the C** programs. Real (about 0.5 to 14 sec) and user time (about
0.5 to 5 sec) showed many large outliers in comparison to the system time (about 0.01
to 0.18 sec). Nevertheless, all showed the same qualitative behavior: The runs with local
activation used slightly more computer time than the ones with random activation and



both needed clearly more than the parallel activation. The case of local activation on
the toroid used the most memory as the calculation of the neighbourhood on the toroid
obviously used more memory than the different styles to model the borders.

In deciding how to model time and borders in a specific simulations it is thus im-
portant to consider the naturality of the approach, the ease of computing and necessary
assumptions about the behavioural mechanisms.

Animals in nature certainly behave in parallel to each other. In this respect, the
parallel approach to modelling time seems to be the most natural. On the other hand it
is very rare that animals in nature move exactly at the same time. Thus the naturalistic
way to model time might be to take very small steps in time but not moving (or not
letting) the animat (behave) most of the time steps. This is then closely approached with
the assignement of random waiting times to each animat but without the waste of a lot
of model time at which nothing happens. On top, it is not farfetched to assume that
an animal reacts more quickly to something important going on in its vicinity which can
be reflected with activating animals locally. The only possible disadvantage of the local
activation is, that animats that are close to others already, start to dominate what is
happening in the model and thus other animats might have a decreased probability to get
into the vicinity of another animat.

The truly parallel approach has another limitation: if one wants to add more complex
social interactions then one has to make strong assumptions about the animats mechanism
to forsee another animats trajectory as not to overshoot in an approach. Additionally, in
a model with parallel activation the model state always changes between two time steps:
the past one on which the decisions to move were based and the recent one reflecting the
present situation. In models with random activation there is only the present on which
the animat with the shortes waiting time makes its decisions, moves (behaves) and leaves
a present state for the next animat in turn. Thus one could say that the local activation
is a rather easily computed way to achieve a naturally behaving system without detailed
preassumptions on the animtes behavioural mechanisms.

The toroid is certainly the simplest way to model a lattice but also the most unnatural
(how many beings live on a toroid?, except maybe Escher’s ants [or was that a Moebius—
band?]). Additionally, one avoids a first, very simple structuring of the space which can
have a huge impact on the behaviour of a model-system. The alternatives presented here
are certainly simplistic be it the fixed border or the somewhat more continous behavioural
reflection. The disadvantage of such approaches is again, that they make strong assump-
tions on behavioural mechanisms of the animats. Thus the recommendation here might
be try to avoid borders that must explicitely be modeled. This can be achieved in different
ways: either one has a network of patches where only certain moves are possible anyway,
one lets the animats go through a lattice and they just disappear if they go over the edge
or the behavioural mechanism of the animats if it is somewhat more complicates might
be focused on resources that are only available within the boundary of the model-lattice,
such that most decisions lead to moves within the lattice anyway. If the borders are small
compared to the rest of the lattice the problem of what happens at the border is less and
less an issue.

In the present paper the influece on the model outcome in individual-based artificial—
world models was only investigated for two possible variables. It is obvious that other
variables might also influence the outcome and obscure “low level” decsions such as how to
model time and borders. Such variables might inlcude in increasing order of complexity:
continuous space instead of discrete space, variable step size (either random or controlled
through the local environment), more variable step direction or directional movements,
the perceptive field of the animat, the shape and strucutre of the landscape and more
complex behaviour of the animats, which is, of course, what we are finally interested in.
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Table 1: Outcome of the statistical analysis (ANOVA). All models reported were significant
with at least p < 0.01. Given are the response variable, whether the response variable has been
transformed (c: corrected values, i. e. divided by the number of moves, sqrt: square-root),
which explanatory variables had a significant influence (p-values of 0.001 designate p < 0.001),
and the diagnostics from the analysis of residuals (cp. Statistical methods, 1: qq-plot, 2: TA-
plot, 3: residuals versus border, 4: residuals versus time; s: there were steps in the normal plot,
o: outliers, uv: unequal variance; diagnostics in parentheses refer to minor deviations. Some
test were rerun without outliers (w/o plus number of outliers).

Response variable explanatory variables analysis of residuals
trans border time 1nt-er- 1 2 3 4
action

Number (#) of moves sqrt ns 0.001 ns s/lo  uv ok uv
dito, w/o 11 sqrt 0.001  0.001  0.001 (s) ok ok uv
Median # of visits c 0.001 ns ns (s) ok (uv) ok
IQR of # of visits sqrt 0.001 ns ns (s) ok ok ok
Median # of visits to edge ¢ 0.001 ns ns (s) ok ok ok
IQR of # of visits to edge sqrt 0.001 ns ns (s) ok ok ok
IQR of # of visits to edge ¢, sqrt  0.001 ns ns (s)/Jo ok ok ok
dito, w/o 2 c 0.001 ns ns (s) ok (uv) ok
# of fields with no visits ¢, sqrt  0.001 0.02 ns (s)/Jo ok ok (uv)
dito, w/o 1 c, sqrt  0.001 0.04 ns (s) ok ok ok
Median # of meetings c ns ns ns ok ok ok ok
Range of # of meetings c, 0.01 ns ns ok ok ok ok
Median length of meetings  sqrt ns 0.001 ns o ok ok uv
dito, w/o 1 sqrt ns 0.001 ns ok ok ok uv

IQR of length of meetings sqrt ns 0.001 ns (s) ok ok uv
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Bigures

Figure 1: Normal-plot, Tukey—Anscombe plot (with a loess smoother fitted) and residuals
versus variables of a model. These are typical plots for the evaluations in this study. Shown
here are the residuals of the median number of visits to the fields per number of moves modelled

by border.

Figure 2: Number of moves, median number of visits per field and inter—quartile range of the
number of visits to the fields split by the approaches to model time and border.

Figure 3: Median number of visits to fields on the edge of the lattice, inter-quartile range of
the number of visits to fields on the edge of the lattice (uncorrected and corrected) and number
of fields with zero visits split by the approaches to model time and border.

Figure 4: Median length of meetings with the four other animats, range (maximum minus
minimum) of number of meetings, median length of meetings with one other animat and inter-
quartile range of the length of the meetings split by the approaches to model time and border.
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